
Basic Probability

Introduction

The world is an uncertain place. Making predictions about
something as seemingly mundane as tomorrow’s weather, for exam-
ple, is actually quite a difficult task. Even with the most advanced
computers and models of the modern era, weather forecasters still
cannot say with absolute certainty whether it will rain tomorrow. The
best they can do is to report their best estimate of the chance that it
will rain tomorrow. For example, if the forecasters are fairly confi-
dent that it will rain tomorrow, they might say that there is a 90%
chance of rain. You have probably heard statements like this your
entire life, but have you ever asked yourself what exactly it means to
say that there is a 90% chance of rain?

Let us consider an even more basic example: tossing a coin. If the
coin is fair, then it is just as likely to come up heads as it is to come
up tails. In other words, if we were to repeatedly toss the coin many
times, we would expect about about half of the tosses to be heads
and and half to be tails. In this case, we say that the probability of
getting a head is 1/2 or 0.5.

Figure 1: The true probability of a head
is 1/2 for a fair coin.

Figure 2: A sequence of 10 flips hap-
pened to contain 3 head. The empirical
frequency of heads is thus 3/10, which
is quite different from 1/2.

Figure 3: A sequence of 100 flips
happened to contain 45 heads. The
empirical frequency of heads is 45/100,
which is much closer to 1/2.

Note that when we say the probability of a head is 1/2, we are not
claiming that any sequence of coin tosses will consist of exactly 50%
heads. If we toss a fair coin ten times, it would not be surprising to
observe 6 heads and 4 tails, or even 3 heads and 7 tails. But as we
continue to toss the coin over and over again, we expect the long-run
frequency of heads to get ever closer to 50%. In general, it is impor-
tant in statistics to understand the distinction between theoretical and
empirical quantities. Here, the true (theoretical) probability of a head
was 1/2, but any realized (empirical) sequence of coin tosses may
have more or less than exactly 50% heads. (See Figures 1 – 3.)

Now suppose instead that we were to toss an unusual coin with
heads on both of its faces. Then every time we flip this coin we will
observe a head — we say that the probability of a head is 1. The
probability of a tail, on the other hand, is 0. Note that there is no way
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we can further modify the coin to make flipping a head even more
likely. Thus, a probability is always a number between 0 and 1 inclusive.

First Concepts

Terminology

When we later discuss examples that are more complicated than flip-
ping a coin, it will be useful to have an established vocabulary for
working with probabilities. A probabilistic experiment (such as toss-
ing a coin or rolling a die) has several components. The sample space
is the set of all possible outcomes in the experiment. We usually de-
note the sample space by Ω, the Greek capital letter “Omega.” So in
a coin toss experiment, the sample space is

Ω = {H, T},

since there are only two possible outcomes: heads (H) or tails (T).
Different experiments have different sample spaces. So if we instead
consider an experiment in which we roll a standard six-sided die, the
sample space is

Ω = {1, 2, 3, 4, 5, 6}.

Collections of outcomes in the sample space Ω are called events,
and we often use capital Roman letters to denote these collections.
We might be interested in the event that we roll an even number, for
example. If we call this event E, then

E = {2, 4, 6}.

Any subset of Ω is a valid event. In particular, one-element subsets
are allowed, so we can speak of the event F of rolling a 4, F = {4}.

Assigning probabilities to dice rolls and coin flips

In a random experiment, every event gets assigned a probability. No-
tationally, if A is some event of interest, then P(A) is the probability
that A occurs. The probabilities in an experiment are not arbitrary;
they must satisfy a set of rules or axioms. We first require that all
probabilities be nonnegative. In other words, in an experiment with
sample space Ω, it must be the case that

P(A) ≥ 0 (1)

for any event A ⊆ Ω. This should make sense given that we’ve
already said that a probability of 0 is assigned to an impossible event,
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and there is no way for something to be less likely than something
that is impossible!

The next axiom is that the sum of the probabilities of all the outcomes
in Ω must be 1. We can restate this requirement by the equation

∑
ω∈Ω

P(ω) = 1. (2)

This rule can sometimes be used to deduce the probability of an
outcome in certain experiments. Consider an experiment in which we
roll a fair die, for example. Then each outcome (i.e. each face of the
die) is equally likely. That is,

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = a,

for some number a. Equation (2) now allows us to conclude

1 =
6

∑
k=1

P(k) =
6

∑
k=1

a = 6a,

so a = 1/6. In this example, we were able to use the symmetry of the
experiment along with one of the probability axioms to determine the
probability of rolling any number.

Once we know the probabilties of the outcomes in an experiment,
we can compute the probability of any event. This is because the
probability of an event is the sum of the probabilities of the outcomes it
comprises. In other words, for an event A ⊆ Ω, the probability of A is

P(A) = ∑
ω∈A

P(ω). (3)

To illustrate this equation, let us find the probability of rolling an
even number, an event which we will denote by E. Since E = {2, 4, 6},
we simply add the probabilities of these three outcomes to obtain

P(E) = ∑
ω∈E

P(ω)

= P(2) + P(4) + P(6)

=
1
6
+

1
6
+

1
6

=
1
2

.

What is the probability that we get at least one H?

Solution. One way to solve this problem is to add up the probabilities
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of all outcomes that have at least one H. We would get

P(flip at least one H) = P(HH) + P(HT) + P(TH)

= p2 + p · (1− p) + (1− p) · p
= p2 + 2 · (p− p2)

= 2p− p2

= p · (2− p).

Another way to do this is to find the probability that we don’t flip at
least one H, and subtract that probability from 1. This would give us
the probability that we do flip at least one H.

The only outcome in which we don’t flip at least one H is if we flip
T both times. We would then compute

P(don’t flip at least one H) = P(TT) = (1− p)2

Then to get the complement of this event, i.e. the event where we
do flip at least one H, we subtract the above probability from 1. This
gives us

P(flip at least one H) = 1− P(don’t flip at least one H)

= 1− (1− p)2

= 1− (1− 2p + p2)

= 2p− p2

= p · (2− p).

Wowee! Both methods for solving this problem gave the same an-
swer. Notice that in the second calculation, we had to sum up fewer
probabilities to get the answer. It can often be the case that comput-
ing the probability of the complement of an event and subtracting
that from 1 to find the probability of the original event requires less
work.

Independence

If two events A and B don’t influence or give any information about
the other, we say A and B are independent. Remember that this is
not the same as saying A and B are disjoint. If A and B were dis-
joint, then given information that A happened, we would know with
certainty that B did not happen. Hence if A and B are disjoint they
could never be independent. The mathematical statement of indepen-
dent events is given below.

Definition 0.0.1. Let A and B both be subsets of our sample space Ω. Then
we say A and B are independent if

P(A ∩ B) = P(A)P(B)
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In other words, if the probability of the intersection factors into the product
of the probabilities of the individual events, they are independent.

We haven’t defined set intersection in this section, but it is defined
in the set theory chapter. The ∩ symbol represents A and B happen-
ing, i.e. the intersection of the events.

Example 0.0.1. Returning to our double coin flip example, our sample
space was

Ω = {HH, HT, TH, TT}

Define the events

A .
= {first flip heads} = {HH, HT}

B .
= {second flip heads} = {HT, TT}

Notation: We write the sign .
= to represent that we are defining something.

In the above expression, we are defining the arbitrary symbols A and B to
represent events.

Intuitively, we suspect that A and B are independent events, since the
first flip has no effect on the outcome of the second flip. This intuition aligns
with the definition given above, as

P(A ∩ B) = P({HT}) = 1
4

and

P(A) = P(B) =
1
4
+

1
4
=

1
2

.

We can verify that

P(A ∩ B) =
1
4
=

1
2
· 1

2
= P(A)P(B)

Hence A and B are independent. This may have seemed like a silly exercise,
but in later chapters, we will encounter pairs of sets where it is not intu-
itively clear whether or not they are independent. In these cases, we can
simply verify this mathematical definition to conclude independence.
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Expectation

Consider the outcome of a single die roll, and call it X. A reasonable
question one might ask is “What is the average value of X?". We
define this notion of “average” as a weighted sum of outcomes.

Since X can take on 6 values, each with probability 1
6 , the weighted

average of these outcomes should be

Weighted Average =
1
6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6

=
1
6
· (1 + 2 + 3 + 4 + 5 + 6)

=
21
6

= 3.5

This may seem dubious to some. How can the average roll be a non-
integer value? The confusion lies in the interpretation of the phrase
average roll. A more correct interpretation would be the long term
average of the die rolls. Suppose we rolled the die many times, and
recorded each roll. Then we took the average of all those rolls. This
average would be the fraction of 1’s, times 1, plus the fraction of 2’s,
times 2, plus the fraction of 3’s, times 3, and so on. But this is exactly
the computation we have done above! In the long run, the fraction of
each of these outcomes is nothing but their probability, in this case, 1

6
for each of the 6 outcomes.

From this very specific die rolling example, we can abstract the no-
tion of the average value of a random quantity. The concept of average
value is an important one in statistics, so much so that it even gets a
special bold faced name. Below is the mathematical definition for the
expectation, or average value, of a random quantity X.

Definition 0.0.2. The expected value, or expectation of X, denoted by
E(X), is defined to be

E(X) = ∑
x∈X(Ω)

xP(X = x)

This expression may look intimidating, but it is actually convey-
ing a very simple set of instructions, the same ones we followed to
compute the average value of X.

The ∑ sign means to sum over, and the indices of the items we are
summing are denoted below the ∑ sign. The ∈ symbol is shorthand
for “contained in”, so the expression below the ∑ is telling us to
sum over all items contained in our sample space Ω. We can think of
the expression to the right of the ∑ sign as the actual items we are
summing, in this case, the weighted contribution of each item in our
sample space.
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The notation X(Ω) is used to deal with the fact that Ω may not be
a set of numbers, so a weighted sum of elements in Ω isn’t even well
defined. For instance, in the case of a coin flip, how can we compute
H · 1

2 + T · 1
2 ? We would first need to assign numerical values to H and T

in order to compute a meaningful expected value. For a coin flip we
typically make the following assignments,

T 7→ 0

H 7→ 1

So when computing an expectation, the indices that we would sum
over are contained in the set

X(Ω) = {0, 1}

Let’s use this set of instructions to compute the expected value for a
coin flip.

Expectation of a Coin Flip

Now let X denote the value of a coin flip with bias p. That is, with
probability p we flip H, and in this case we say X = 1. Similarly,
with probability 1− p we flip T, and in this case we say X = 0. The
expected value of the random quantity X is then

E(X) = ∑
x∈X(Ω)

xP(X = x)

= ∑
x∈{0,1}

xP(X = x)

= 0 · P(X = 0) + 1 · P(X = 1)

= 0 · P(T) + 1 · P(H)
= 0 · (1− p) + 1 · p
= p

So the expected value of this experiment is p. If we were flipping a
fair coin, then p = 1

2 , so the average value of X would be 1
2 .

Again, we can never get an outcome that would yield X = 1
2 , but

this is not the interpretation of the expectation of X. Remember, the
correct interpretation is to consider what would happen if we flipped
the coin many times, obtained a sequence of 0’s and 1’s, and took the
average of those values. We would expect around half of the flips to
give 0 and the other half to give 1, giving an average value of 1

2 .

Exercise 0.0.1. Show the following properties of expectation.

(a) If X and Y are two random variables, then

E(X + Y) = E(X) + E(Y)
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(b) If X is a random variable and c is a constant, then

E(cX) = cE(X)

(c) If X and Y are independent random variables, then

E[XY] = E[X]E[Y]

Proof. For now, we will take (a) and (c) as a fact, since we don’t know
enough to prove them yet (and we haven’t even defined indepen-
dence of random variables!). (b) follows directly from the definition
of expectation given above.

Variance

The variance of a random variable X is a nonnegative number that
summarizes on average how much X differs from its mean, or expec-
tation. The first expression that comes to mind is

X− E(X)

i.e. the difference between X and its mean. This itself is a random
variable, since even though EX is just a number, X is still random.
Hence we would need to take an expectation to turn this expression
into the average amount by which X differs from its expected value.
This leads us to

E(X− EX)

This is almost the definition for variance. We require that the vari-
ance always be nonnegative, so the expression inside the expectation
should always be ≥ 0. Instead of taking the expectation of the differ-
ence, we take the expectation of the squared difference.

Definition 0.0.3. The variance of X, denoted by Var(X) is defined

Var(X) = E[(X− EX)2]

Below we give and prove some useful properties of the variance.

Proposition 0.0.1. If X is a random variable with mean EX and c ∈ is a
real number,

(a) Var(X) ≥ 0.

(b) Var(cX) = c2Var(X).

(c) Var(X) = E(X2)− E(X).
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(d) If X and Y are independent random variables, then

Var(X + Y) = Var(X) + Var(Y)

Proof.

(a) Since (X − EX)2 ≥ 0, its average is also ≥ 0. Hence E[(X −
EX)2] ≥ 0.

(b) Going by the definition, we have

Var(cX) = E[(cX− E[cX])2]

= E[(cX− cEX)2]

= E[c2(X− EX)2]

= c2E[(X− EX)2]

= c2Var(X)

(c) Expanding out the square in the definition of variance gives

Var(X) = E[(X− EX)2]

= E[X2 − 2XEX + (EX)2]

= E[X2]− E(2XEX) + E((EX)2)

= E[X2]− 2EXEX + (EX)2

= E[X2]− (EX)2

where the third equality comes from linearity of E (Exercise 2.3
(a)) and the fourth equality comes from Exercise 2.3 (b) and the
fact that since EX and (EX)2 are constants, their expectations are
just EX and (EX)2 respectively.

(d) By the definition of variance,

Var(X + Y) = E[(X + Y)2]− (E[X + Y])2

= E[X2 + 2XY + Y2]−
(
(E[X])2 + 2E[X]E[Y] + (E[Y])2

)
= E[X2]− (E[X])2 + E[Y2]− (E[Y]2) + 2E[XY]− 2E[X]E[Y]

= E[X2]− (E[X])2 + E[Y2]− (E[Y]2)

= Var(X) + Var(Y)

where the fourth equality comes from the fact that if X and Y are
independent, then E[XY] = E[X]E[Y]. Independence of random
variables will be discussed in the “Random Variables” section, so
don’t worry if this proof doesn’t make any sense to you yet.
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Exercise 0.0.2. Compute the variance of a die roll, i.e. a uniform random
variable over the sample space Ω = {1, 2, 3, 4, 5, 6}.

Solution. Let X denote the outcome of the die roll. By definition, the
variance is

Var(X) = E[(X− EX)]2

= E(X2)− (EX)2 (Proposition 2.11 (c))

=
( 6

∑
k=1

k2 · 1
6

)
− (3.5)2 (Definition of Expectation)

=
1
6
· (1 + 4 + 9 + 16 + 25 + 36)− 3.52

=
1
6
· 91− 3.52

≈ 2.92

Remark 0.0.1. The square root of the variance is called the standard
deviation.

Markov’s Inequality

Here we introduce an inequality that will be useful to us in the next
section. Feel free to skip this section and return to it when you read
“Chebyschev’s inequality" and don’t know what’s going on.

Markov’s inequality is a bound on the probability that a nonnega-
tive random variable X exceeds some number a.

Theorem 0.0.1 (Markov’s inequality). Suppose X is a nonnegative
random variable and a ∈ is a positive constant. Then

P(X ≥ a) ≤ EX
a

Proof. By definition of expectation, we have

EX = ∑
k∈X(Ω)

kP(X = k)

= ∑
k∈X(Ω) s.t. k≥a

kP(X = k) + ∑
k∈X(Ω) s.t. k<a

kP(X = k)

≥ ∑
k∈X(Ω) s.t. k≥a

kP(X = k)

≥ ∑
k∈X(Ω) s.t. k≥a

aP(X = k)

= a ∑
k∈X(Ω) s.t. k≥a

P(X = k)

= aP(X ≥ a)
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where the first inequality follows from the fact that X is nonnegative
and probabilities are nonnegative, and the second inequality follows
from the fact that k ≥ a over the set {k ∈ X(Ω) s.t. k ≥ a}.

Notation: “s.t.” stands for “such that”.
Dividing both sides by a, we recover

P(X ≥ a) ≤ EX
a

Corollary 0.0.1 (Chebyschev’s inequality). Let X be a random variable.
Then

P(|X− EX| > ε) ≤ Var(X)

ε2

Proof. This is marked as a corollary because we simply apply Markov’s
inequality to the nonnegative random variable (X − EX)2. We then
have

P(|X− EX| > ε) = P((X− EX)2 > ε2) (statements are equivalent)

≤ E[(X− EX)2]

ε2 (Markov’s inequality)

=
Var(X)

ε2 (definition of variance)
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Estimation

One of the main reasons we do statistics is to make inferences about
a population given data from a subset of that population. For exam-
ple, suppose there are two candidates running for office. We could
be interested in finding out the true proportion of the population
that supports a particular political candidate. Instead of asking every
single person in the country their preferred candidate, we could ran-
domly select a couple thousand people from across the country and
record their preference. We could then estimate the true proportion
of the population that supports the candidate using this sample pro-
portion. Since each person can only prefer one of two candidates, we
can model this person’s preference as a coin flip with bias p = the
true proportion that favors candidate 1.

Estimating the Bias of a Coin

Suppose now that we are again flipping a coin, this time with bias p.
In other words, our coin can be thought of as a random quantity X
defined

X =

1 with probability p

0 with probability 1− p

where 1 represents H and 0 represents T. If we were just handed this
coin, and told that it has some bias 0 ≤ p ≤ 1, how would we
estimate p? One way would be to flip the coin n times, count the
number of heads we flipped, and divide that number by n. Letting Xi

be the outcome of the ith flip, our estimate, denoted p̂, would be

p̂ =
1
n

n

∑
i=1

Xi

As the number of samples n gets bigger, we would expect p̂ to get
closer and closer to the true value of p.

Estimating π

In the website’s visualization, we are throwing darts uniformly at
a square, and inside that square is a circle. If the side length of the
square that inscribes the circle is L, then the radius of the circle is
R = L

2 , and its area is A = π( L
2 )

2. At the ith dart throw, we can define

Xi =

1 if the dart lands in the circle

0 otherwise
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The event “dart lands in the circle" has probability

p =
Area of Circle
Area of Square

=
π
(

L
2

)2

L2 =
π

4

So with probability p = π
4 , a dart lands in the circle, and with proba-

bility 1− π
4 , it doesn’t.

By the previous section, we can estimate p using p̂ = 1
n ∑n

i=1 Xi so
that for large enough n, we have

p̂ ≈ p =
π

4

so that rearranging for π yields

π ≈ 4p̂

Hence our approximation gets closer and closer to π as the number
of sample n→ ∞ causing p̂→ p.

Consistency of Estimators

What exactly do we mean by “closer and closer"? In this section, we
describe the concept of consistency in order to make precise this
notion of convergence. Our estimator in the last section, 4p̂ is itself
random, since it depends on the n sample points we used to compute
it. If we were to take a different set of n sample points, we would
likely get a different estimate. Despite this randomness, intuitively
we believe that as the number of samples n tends to infinity, the
estimator 4p̂ will converge in some probabilistic sense, to π.

Another way to formulate this is to say, no matter how small a
number we pick, say 0.001, we should always be able to conclude that
the probability that our estimate differs from π by more than 0.001,
goes to 0 as the number of samples goes to infinity. We chose 0.001 in
this example, but this notion of probabilistic convergence should hold
for any positive number, no matter how small. This leads us to the
following definition.

Definition 0.0.4. We say an estimator p̂ is a consistent estimator of p if
for any ε > 0,

lim
n→∞

P(| p̂− p| > ε) = 0.

Let’s show that 4p̂ is a consistent estimator of π.
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Proof. Choose any ε > 0. By Chebyshev’s inequality (Corollary 2.13),

P(|4p̂− π| > ε) ≤ Var(4p̂)
ε2

=
Var
(

4 · 1
n ∑n

i=1 Xi

)
ε2 (Definition of p̂)

=

16
n2 Var

(
∑n

i=1 Xi

)
ε2 (Var(cY) = c2Var(Y))

=
16
n2 ∑n

i=1 Var(Xi)

ε2 (Xi’s are independent)

=
16
n2 · n ·Var(X1)

ε2 (Xi’s are identically distributed)

=
16
n · p(1− p)

ε2 (Var(Xi) = p(1− p))

=
16 · π

4

(
1− π

4

)
nε2 (p =

π

4
)

→ 0

as n → ∞. Hence we have shown that 4p̂ is a consistent estimator of
π.


	Basic Probability
	Introduction
	First Concepts
	Expectation
	Estimation


