
Compound Probability

Set Theory

A probability measure P is a function that maps subsets of the state
space Ω to numbers in the interval [0, 1]. In order to study these
functions, we need to know some basic set theory.

Basic Definitions

Definition 0.0.5. A set is a collection of items, or elements, with no re-
peats. Usually we write a set A using curly brackets and commas to distin-
guish elements, shown below

A = {a0, a1, a2}

In this case, A is a set with three distinct elements: a0, a1, and a2. The size
of the set A is denoted |A| and is called the cardinality of A. In this case,
|A| = 3. The empty set is denoted ∅ and means

∅ = { }

Some essential set operations in probability are the intersection,
union, and complement operators, denoted ∩,∪, and c. They are
defined below

Definition 0.0.6. Intersection and Union each take two sets in as input,
and output a single set. Complementation takes a single set in as input
and outputs a single set. If A and B are subsets of our sample space Ω, then
we write

(a) A ∩ B = {x ∈ Ω : x ∈ A and x ∈ B}.

(b) A ∪ B = {x ∈ Ω : x ∈ A or x ∈ B}.

(c) Ac = {x ∈ Ω : x /∈ A}.

Another concept that we need to be familiar with is that of dis-
jointness. For two sets to be disjoint, they must share no common
elements, i.e. their intersection is empty.



20 seeing theory

Definition 0.0.7. We say two sets A and B are disjoint if

A ∩ B = ∅

It turns out that if two sets A and B are disjoint, then we can write
the probability of their union as

P(A ∪ B) = P(A) + P(B)

Set Algebra

There is a neat analogy between set algebra and regular algebra.
Roughly speaking, when manipulating expressions of sets and set
operations, we can see that “ ∪ ” acts like “ + ” and “ ∩ ” acts like “×
”. Taking the complement of a set corresponds to taking the negative
of a number. This analogy isn’t perfect, however. If we considered the
union of a set A and its complement Ac, the analogy would imply
that A ∪ Ac = ∅, since a number plus its negative is 0. However, it is
easily verified that A ∪ Ac = Ω (Every element of the sample space is
either in A or not in A.)

Although the analogy isn’t perfect, it can still be used as a rule of
thumb for manipulating expressions like A ∩ (B ∪ C). The number
expression analogy to this set expression is a × (b + c). Hence we
could write it

a× (b + c) = a× b + a× c

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

The second set equality is true. Remember that what we just did was
not a proof, but rather a non-rigorous rule of thumb to keep in mind.
We still need to actually prove this expression.

Exercise 0.0.3. Show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof. To show set equality, we can show that the sets are contained
in each other. This is usually done in two steps.

Step 1: “⊂”. First we will show that A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩
C).

Select an arbitrary element in A ∩ (B ∪ C), denoted ω. Then by
definition of intersection, ω ∈ A and ω ∈ (B ∪ C). By definition of
union, ω ∈ (B ∪ C) means that ω ∈ B or ω ∈ C. If ω ∈ B, then since
ω is also in A, we must have ω ∈ A ∩ B. If ω ∈ C, then since ω is also
in A, we must have ω ∈ A ∩ C. Thus we must have either

ω ∈ A ∩ B or ω ∈ A ∩ C

Hence, ω ∈ (A ∩ B) ∪ (A ∩ C). Since ω was arbitrary, this shows that
any element of A ∩ (B ∪ C) is also an element of (A ∩ B) ∪ (A ∩ C).
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Thus we have shown

A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C)

Step 2: “ ⊃ ”. Next we will show that (A ∩ B) ∪ (A ∩ C) ⊂
A ∩ (B ∪ C).

Select an arbitrary element in (A ∩ B) ∪ (A ∩ C), denoted ω. Then
ω ∈ (A ∩ B) or ω ∈ (A ∩ C). If ω ∈ A ∩ B, then ω ∈ B. If ω ∈ A ∩ C,
then ω ∈ C. Thus ω is in either B or C, so ω ∈ B ∪ C. In either case,
ω is also in A. Hence ω ∈ A ∩ (B ∪ C). Thus we have shown

(A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)

Since we have shown that these sets are included in each other, they
must be equal. This completes the proof.

On the website, plug in each of the sets (A ∩ B) ∪ (A ∩ C) and
A ∩ (B ∪ C). Observe that the highlighted region doesn’t change,
since the sets are the same!

DeMorgan’s Laws

In this section, we will show two important set identities useful for
manipulating expressions of sets. These rules known as DeMorgan’s
Laws.

Theorem 0.0.2 (DeMorgan’s Laws). Let A and B be subsets of our sam-
ple space Ω. Then

(a) (A ∪ B)c = Ac ∩ Bc

(b) (A ∩ B)c = Ac ∪ Bc.

Proof.

(a) We will show that (A ∪ B)c and Ac ∩ Bc are contained within
each other.

Step 1: “⊂". Suppose ω ∈ (A ∪ B)c. Then ω is not in the set
A ∪ B, i.e. in neither A nor B. Then ω ∈ Ac and ω ∈ Bc, so
ω ∈ Ac ∩ Bc. Hence (A ∪ B)c ⊂ Ac ∩ Bc.

Step 2: “⊃". Suppose ω ∈ Ac ∩ Bc. Then ω is not in A and ω is
not in B. So ω is in neither A nor B. This means ω is not in the
set (A ∪ B), so ω ∈ (A ∪ B)c. Hence Ac ∩ Bc ⊂ (A ∪ B)c.

Since Ac ∩ Bc and (A ∪ B)c are subsets of each other, they must
be equal.

(b) Left as an exercise.
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If you’re looking for more exercises, there is a link on the Set The-
ory page on the website that links to a page with many set identities.
Try to prove some of these by showing that the sets are subsets of
each other, or just plug them into the website to visualize them and
see that their highlighted regions are the same.

Combinatorics

In many problems, to find the probability of an event, we will have
to count the number of outcomes in Ω which satisfy the event, and
divide by |Ω|, i.e. the total number of outcomes in Ω. For example,
to find the probability that a single die roll is even, we count the total
number of even rolls, which is 3, and divide by the total number of
rolls, 6. This gives a probability of 1

2 . But what if the event isn’t as
simple as “roll an even number”? For example if we flipped 10 coins,
our event could be “flipped 3 heads total”. How could we count the
number of outcomes that have 3 heads in them without listing them
all out? In this section, we will discover how to count the outcomes
of such an event, and generalize the solution to be able to conquer
even more complex problems.

Permutations

Suppose there are 3 students waiting in line to buy a spicy chicken
sandwich. A question we could ask is, “How many ways can we
order the students in this line?" Since there are so few students, let’s
just list out all possible orderings. We could have any of

6 of these



(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

So there are 6 total possible orderings. If you look closely at the list
above, you can see that there was a systematic way of listing them.
We first wrote out all orderings starting with 1. Then came the order-
ings starting with 2, and then the ones that started with 3. In each of
these groups of orderings starting with some particular student, there
were two orderings. This is because once we fixed the first person
in line, there were two ways to order the remaining two students.
Denote Ni to be the number of ways to order i students. Now we
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observe that the number of orderings can be written

N3 = 3 · N2

since there are 3 ways to pick the first student, and N2 ways to order
the remaining two students. By similar reasoning,

N2 = 2 · N1

Since the number of ways to order 1 person is just 1, we have N1 = 1.
Hence,

N3 = 3 · N2 = 3 · (2 · N1) = 3 · 2 · 1 = 6

which is the same as what we got when we just listed out all the
orderings and counted them.

Now suppose we want to count the number of orderings for 10

students. 10 is big enough that we can no longer just list out all pos-
sible orderings and count them. Instead, we will make use of our
method above. The number of ways to order 10 students is

N10 = 10 · N9 = 10 · (9 · N8) = · · · = 10 · 9 · 8 · 7 · ... · 2 · 1 = 3, 628, 800

It would have nearly impossible for us to list out over 3 million or-
derings of 10 students, but we were still able to count these orderings
using our neat trick. We have a special name for this operation.

Definition 0.0.8. The number of permutations, or orderings, of n distinct
objects is given by the factorial expression,

n! = n · (n− 1) · ... · 2 · 1

The factorial symbol is an exclamation point, which is used to
indicate the excitement of counting.

Combinations

Now that we’ve established a quick method of counting the number
of ways to order n distinct objects, let’s figure out how to do our
original problem. At the start of this section we asked how to count
the number of ways we could flip 10 coins and have 3 of them be
heads. The valid outcomes include

(H, H, H, T, T, T, T, T, T, T)

(H, H, T, H, T, T, T, T, T, T)

(H, H, T, T, H, T, T, T, T, T)

...
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But its not immediately clear how to count all of these, and it defi-
nitely isn’t worth listing them all out. Instead let’s apply the permu-
tations trick we learned in Section 3.2.2.

Suppose we have 10 coins, 3 of which are heads up, the remaining
7 of which are tails up. Label the 3 heads as coins 1, 2, and 3. Label
the 7 tails as coins 4,5,6,7,8,9, and 10. There are 10! ways to order,
or permute, these 10 (now distinct) coins. However, many of these
permutations correspond to the same string of H’s and T’s. For ex-
ample, coins 7 and 8 are both tails, so we would be counting the two
permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(1, 2, 3, 4, 5, 6, 8, 7, 9, 10)

as different, when they both correspond to the outcome

(H, H, H, T, T, T, T, T, T, T)

hence we are over counting by just taking the factorial of 10. In fact,
for the string above, we could permute the last 7 coins in the string
(all tails) in 7! ways, and we would still get the same string, since
they are all tails. To any particular permutation of these last 7 coins,
we could permute the first 3 coins in the string (all heads) in 3! ways
and still end up with the string

(H, H, H, T, T, T, T, T, T, T)

This means that to each string of H’s and T’s, we can rearrange the
coins in 3! · 7! ways without changing the actual grouping of H’s and
T’s in the string. So if there are 10! total ways of ordering the labeled
coins, we are counting each unique grouping of heads and tails 3! ·
7! times, when we should only be counting it once. Dividing the
total number of permutations by the factor by which we over count
each unique grouping of heads and tails, we find that the number of
unique groupings of H’s and T’s is

# of outcomes with 3 heads and 7 tails =
10!
3!7!

This leads us to the definition of the binomial coefficient.

Definition 0.0.9. The binomial coefficient is defined(
n
k

)
.
=

n!
k!(n− k)!

The binomial coefficient, denoted (n
k), represents the number of

ways to pick k objects from n objects where the ordering within the
chosen k objects doesn’t matter. In the previous example, n = 10 and
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k = 3. We could rephrase the question as, “How many ways can we
pick 3 of our 10 coins to be heads?" The answer is then(

n
k

)
=

(
10
3

)
=

10!
3!(10− 3)!

=
10!
3!7!

= 120

We read the expression (n
k) as “n choose k". Let’s now apply this

counting trick to make some money.

Poker

One application of counting includes computing probabilities of
poker hands. A poker hand consists of 5 cards drawn from the deck.
The order in which we receive these 5 cards is irrelevant. The number
of possible hands is thus(

52
5

)
=

52!
5!(52− 5)!

= 2, 598, 960

since there are 52 cards to choose 5 cards from.
In poker, there are types of hands that are regarded as valuable in

the following order form most to least valuable.

1. Royal Flush: A, K, Q, J, 10 all in the same suit.

2. Straight Flush: Five cards in a sequence, all in the same suit.

3. Four of a Kind: Exactly what it sounds like.

4. Full House: 3 of a kind with a pair.

5. Flush: Any 5 cards of the same suit, but not in sequence.

6. Straight: Any 5 cards in sequence, but not all in the same suit.

7. Three of a Kind: Exactly what it sounds like.

8. Two Pair: Two pairs of cards.

9. One Pair: One pair of cards.

10. High Card: Anything else.

Let’s compute the probability of drawing some of these hands.

Exercise 0.0.4. Compute the probabilities of the above hands.

Solution.

1. There are only 4 ways to get this hand. Either we get the royal
cards in diamonds, clubs, hearts, or spades. We can think of this
has choosing 1 suit from 4 possible suits. Hence the probability of
this hand is

P(Royal Flush) =
(4

1)

(52
5 )
≈ 1.5 · 10−6
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2. Assuming hands like K, A, 2, 3, 4 don’t count as consecutive, there
are in total 10 valid consecutive sequences of 5 cards (each starts
with any of A,2,. . . ,10). We need to pick 1 of 10 starting values,
and for each choice of a starting value, we can pick 1 of 4 suits to
have them all in. This gives a total of (10

1 ) · (
4
1) = 40 straight flushes.

However, we need to subtract out the probability of a royal flush,
since one of the ten starting values we counted was 10 (10, J, Q, K,
A is a royal flush). Hence the probability of this hand is

P(Straight Flush) =
(10

1 )(
4
1)− (4

1)

(52
5 )

≈ 1.5 · 10−5

3. There are 13 values and only one way to get 4 of a kind for any
particular value. However, for each of these ways to get 4 of a
kind, the fifth card in the hand can be any of the remaining 48

cards. Formulating this in terms of our choose function, there are
(13

1 ) ways to choose the value, (12
1 ) ways to choose the fifth card’s

value, and (4
1) ways to choose the suit of the fifth card. Hence the

probability of such a hand is

P(Four of a Kind) =
(13

1 )(
12
1 )(

4
1)

(52
5 )

≈ 0.00024

4. For the full house, there are (13
1 ) ways to pick the value of the

triple, (4
3) ways to choose which 3 of the 4 suits to include in the

triple, (12
1 ) ways to pick the value of the double, and (4

2) ways to
choose which 2 of the 4 suits to include in the double. Hence the
probability of this hand is

P(Full House) =
(13

1 )(
4
3)(

12
1 )(

4
2)

(52
5 )

≈ 0.0014

5. through 10. are left as exercises. The answers can be checked on
the Wikipedia page titled “Poker probability”.
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Conditional Probability

Suppose we had a bag that contained two coins. One coin is a fair
coin, and the other has a bias of 0.95, that is, if you flip this biased
coin, it will come up heads with probability 0.95 and tails with prob-
ability 0.05. Holding the bag in one hand, you blindly reach in with
your other, and pick out a coin. You flip this coin 3 times and see that
all three times, the coin came up heads. You suspect that this coin is
“likely” the biased coin, but how “likely” is it?

This problem highlights a typical situation in which new infor-
mation changes the likelihood of an event. The original event was
“we pick the biased coin”. Before reaching in to grab a coin and then
flipping it, we would reason that the probability of this event occur-
ring (picking the biased coin) is 1

2 . After flipping the coin a couple
of times and seeing that it landed heads all three times, we gain new
information, and our probability should no longer be 1

2 . In fact, it
should be much higher. In this case, we “condition” on the event of
flipping 3 heads out of 3 total flips. We would write this new proba-
bility as

P(picking the biased coin | flipping 3 heads out of 3 total flips)

The “bar” between the two events in the probability expression above
represents “conditioned on”, and is defined below.

Definition 0.0.10. The probability of an event A conditioned on an event B
is denoted and defined

P(A | B) =
P(A ∩ B)

P(B)

The intuition of this definition can be gained by playing with the
visualization on the website. Suppose we drop a ball uniformly at
random in the visualization. If we ask “What is the probability that
a ball hits the orange shelf?", we can compute this probability by
simply dividing the length of the orange shelf by the length of the
entire space. Now suppose we are given the information that our
ball landed on the green shelf. What is the probability of landing on
the orange shelf now? Our green shelf has become our “new” sam-
ple space, and the proportion of the green shelf that overlaps with
the orange shelf is now the only region in which we could have pos-
sibly landed on the orange shelf. To compute this new conditional
probability, we would divide the length of the overlapping, or “inter-
secting”, regions of the orange and green shelves by the total length
of the green shelf.
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Bayes Rule

Now that we’ve understood where the definition of conditional prob-
ability comes from, we can use it to prove a useful identity.

Theorem 0.0.3 (Bayes Rule). Let A and B be two subsets of our sample
space Ω. Then

P(A | B) =
P(B | A)P(A)

P(B)

Proof. By the definition of conditional probability,

P(A | B) =
P(A ∩ B)

P(B)

Similarly,

P(B | A) =
P(A ∩ B)

P(A)

Multiplying both sides by P(A) gives

P(B | A)P(A) = P(A ∩ B)

Plugging this into our first equation, we conclude

P(A | B) =
P(B | A)P(A)

P(B)

Coins in a Bag

Let’s return to our first example in this section and try to use our
new theorem to find a solution. Define the events

A .
= {Picking the biased coin}

B .
= {Flipping 3 heads out of 3 total flips}

We were interested in computing the probability P(A | B). By Bayes
Rule,

P(A | B) =
P(B | A)P(A)

P(B)

P(B | A), i.e. the probability of flipping 3 heads out of 3 total flips
given that we picked the biased coin, is simply (0.95)3 ≈ 0.857. The
probability P(A), i.e. the probability that we picked the biased coin
is 1

2 since we blindly picked a coin from the bag. Now all we need to
do is compute P(B), the overall probability of flipping 3 heads in this
experiment. Remember from the set theory section, we can write

B = B ∩Ω = B ∩ (A ∪ Ac) = (B ∩ A) ∪ (B ∩ Ac)
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So

P(B) = P((B ∩ A) ∪ (B ∩ Ac)) = P(B ∩ A) + P(B ∩ Ac)

since the two sets B ∩ A and B ∩ Ac are disjoint. By the definition of
conditional probability, we can write the above expression as

= P(B | A)P(A) + P(B | Ac)P(Ac)

We just computed P(B | A) and P(A). Similarly, the probability that
we flip 3 heads given that we didn’t pick the biased coin, denoted
P(B | Ac), is the probability that we flip 3 heads given we picked the
fair coin, which is simply ( 1

2 )
3 = 0.125. The event Ac represents the

event in which A does not happen, i.e. the event that we pick the fair
coin. We have P(Ac) = 1− P(A) = 1− 1

2 = 1
2 . Hence

P(B) = P(B | A)P(A) + P(B | Ac)P(Ac)

= 0.857 · 0.5 + 0.125 · 0.5

= 0.491

Plugging this back into the formula given by Bayes Rule,

P(A | B) =
0.857 · 0.5

0.491
= 0.873

Thus, given that we flipped 3 heads out of a total 3 flips, the proba-
bility that we picked the biased coin is roughly 87.3%.

Conditional Poker Probabilities

Within a game of poker, there are many opportunities to flex our
knowledge of conditional probability. For instance, the probability
of drawing a full house is 0.0014, which is less than 2%. But suppose
we draw three cards and find that we have already achieved a pair.
Now the probability of drawing a full house is higher than 0.0014.
How much higher you ask? With our new knowledge of conditional
probability, this question is easy to answer. We define the events

A .
= {Drawing a Full House}

B .
= {Drawing a Pair within the first three cards}

By Bayes Rule,

P(A | B) =
P(B | A)P(A)

P(B)

P(B | A), i.e. the probability that we draw a pair within the first three
cards given that we drew a full house eventually, is 1. This is because
every grouping of three cards within a full house must contain a
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pair. From Section 3.2.3, the probability of drawing a full house is
P(A) = 0.0014.

It remains to compute P(B), the probability that we draw a pair
within the first three cards. The total number of ways to choose 3

cards from 52 is (52
3 ). The number of ways to choose 3 cards con-

taining a pair is (13
1 )(

4
2)(

50
1 ). There are (13

1 ) to choose the value of the
pair, (4

2) ways to pick which two suits of the chosen value make the
pair, and (50

1 ) ways to pick the last card from the remaining 50 cards.
Hence the probability of the event B is

P(B) =
(13

1 )(
4
2)(

50
1 )

(52
3 )

≈ 0.176

Plugging this into our formula from Bayes Rule,

P(A | B) =
1 · 0.0014

0.176
≈ 0.00795

It follows that our chance of drawing a full house has more than
quadrupled, increasing from less than 2% to almost 8%.
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