
Probability Distributions

Throughout the past chapters, we’ve actually already encountered
many of the topics in this section. In order to define things like ex-
pectation and variance, we introduced random variables denoted X
or Y as mappings from the sample space to the real numbers. All of
the distributions we’ve so far looked at have been what are called
discrete distributions. We will soon look at the distinction between
discrete and continuous distributions. Additionally we will introduce
perhaps the most influential theorem in statistics, the Central Limit
Theorem, and give some applications.

Random Variables

In Section 2.2 (Expectation), we wanted to find the expectation of
a coin flip. Since the expectation is defined as a weighted sum of
outcomes, we needed to turn the outcomes into numbers before
taking the weighted average. We provided the mapping

T 7→ 0

H 7→ 1

Here was our first encounter of a random variable.

Definition 0.0.11. A function X that maps outcomes in our sample space
to real numbers, written X : Ω→, is called a random variable.

In the above example, our sample space was

Ω = {H, T}

and our random variable X : Ω →, i.e. our function from the sample
space Ω to the real numbers , was defined by

X(T) = 0

X(H) = 1

Now would be a great time to go onto the website and play with the
“Random Variable” visualization. The sample space is represented
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by a hexagonal grid. Highlight some hexagons and specify the value
your random variable X assigns to those hexagons. Start sampling on
the grid to see the empirical frequencies on the left.

Independence of Random Variables

In previous sections we’ve mentioned independence of random vari-
ables, but we’ve always swept it under the rug during proofs since
we hadn’t yet formally defined the concept of a random variable.
Now that we’ve done so, we can finally define a second form of inde-
pendence (different from independence of events).

Definition 0.0.12. Suppose X and Y are two random variables defined on
some sample space Ω. We say X and Y are independent random vari-
ables if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for any two subsets A and B of .

Let’s go back and prove Exercise 2.9 (c), i.e. that if X and Y are
independent random variables, then

E[XY] = E[X]E[Y]

Proof. Define the random variable Z(ω) = X(ω)Y(ω). By the defini-
tion of expectation, the left hand side can be written

E[XY] = ∑
z∈Z(Ω)

z · P(Z = z)

= ∑
x∈X(Ω),y∈Y(Ω)

xyP(X = x, Y = y)

= ∑
x∈X(Ω)

∑
y∈Y(Ω)

xyP(X ∈ {x}, Y ∈ {y})

= ∑
x∈X(Ω)

∑
y∈Y(Ω)

xyP(X ∈ {x})P(Y ∈ {y})

= ∑
x∈X(Ω)

xP(X ∈ {x}) ∑
y∈Y(Ω)

yP(Y ∈ {y})

= E[X]E[Y]

This completes the proof.
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Discrete vs. Continuous

Thus far we have only studied discrete random variables, i.e. random
variables that take on only up to countably many values. The word
“countably” refers to a property of a set. We say a set is countable if
we can describe a method to list out all the elements in the set such
that for any particular element in the set, if we wait long enough in
our listing process, we will eventually get to that element. In contrast,
a set is called uncountable if we cannot provide such a method.

Countable vs. Uncountable

Let’s first look at some examples.

Example 0.0.2. The set of all natural numbers

N
.
= {1, 2, 3, . . . }

is countable. Our method of enumeration could simply be to start at 1 and
add 1 every iteration. Then for any fixed element n ∈ N, this process would
eventually reach and list out n.

Example 0.0.3. The integers,

Z
.
= {0, 1,−1, 2,−2, 3,−3, . . . }

is countable. Our method of enumeration as displayed above is to start with
0 for the first element, add 1 to get the next element, multiply by -1 to get
the third element, and so on. Any integer k ∈ Z, if we continue this process
long enough, will be reached.

Example 0.0.4. The set of real numbers in the interval [0, 1] is uncountable.
To see this, suppose for the sake of contradiction that this set were countable.
Then there would exist some enumeration of the numbers in decimal form. It
might look like

0 . 1 3 5 4 2 9 5 . . .

0 . 4 2 9 4 7 2 6 . . .

0 . 3 9 1 6 8 3 1 . . .

0 . 9 8 7 3 4 3 5 . . .

0 . 2 9 1 8 1 3 6 . . .

0 . 3 7 1 6 1 8 2 . . .

...

Consider the element along the diagonal of such an enumeration. In this case
the number is

a .
= 0.121318 . . .
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Now consider the number obtained by adding 1 to each of the decimal places,
i.e.

a′ .
= 0.232429 . . .

This number is still contained in the interval [0, 1], but does not show up in
the enumeration. To see this, observe that a′ is not equal to the first element,
since it differs in the first decimal place by 1. Similarly, it is not equal to the
second element, as a′ differs from this number by 1 in the second decimal
place. Continuing this reasoning, we conclude that a′ differs from the nth

element in this enumeration in the nth decimal place by 1. It follows that if
we continue listing out numbers this way, we will never reach the number
a′. This is a contradiction since we initially assumed that our enumeration
would eventually get to every number in [0, 1]. Hence the set of numbers in
[0, 1] is uncountable.

If you’re left feeling confused after these examples, the important
take away is that an uncountable set is much bigger than a countable
set. Although both are infinite sets of elements, uncountable infinity
refers to a “bigger” notion of infinity, one which has no gaps and can
be visualized as a continuum.

Discrete Distributions

Definition 0.0.13. A random variable X is called discrete if X can only
take on finitely many or countably many values.

For example, our coin flip example yielded a random variable
X which could only take values in the set {0, 1}. Hence, X was a
discrete random variable. However, discrete random variables can
still take on infinitely many values, as we see below.

Example 0.0.5 (Poisson Distribution). A useful distribution for modeling
many real world problems is the Poisson Distribution. Suppose λ > 0 is a
positive real number. Let X be distributed according to a Poisson distribu-
tion with parameter λ, i.e.

P(X = k) =
e−λλk

k!

where k ∈ N. The shorthand for stating such a distribution is X ∼ Poi(λ).
Since k can be any number in N, our random variable X has a positive
probability on infinitely many numbers. However, since N is countable, X is
still considered a discrete random variable.

On the website there is an option to select the “Poisson” distribution in
order to visualize its probability mass function. Changing the value of λ

changes the probability mass function, since λ shows up in the probability
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expression above. Drag the value of λ from 0.01 up to 10 to see how varying
λ changes the probabilities.

Example 0.0.6 (Binomial Distribution). Another useful distribution
is called the Binomial Distribution. Consider n coin flips, i.e. n random
variables X1, . . . , Xn each of the form

Xi =

1 with probability p

0 with probability 1− p

Now consider the random variable defined by summing all of these coin flips,
i.e.

S .
=

n

∑
i=1

Xi

We might then ask, “What is the probability distribution of S?” Based on
the definition of S, it can take on values from 0 to n, however it can only
take on the value 0 if all the coins end up tails. Similarly, it can only take on
the value n if all the coins end up heads. But to take on the value 1, we only
need one of the coins to end up heads and the rest to end up tails. This can
be achieved in many ways. In fact, there are (n

1) ways to pick which coin gets
to be heads up. Similarly, for S = 2, there are (n

2) ways to pick which two
coins get to be heads up. It follows that for S = k, there are (n

k) ways to pick
which k coins get to be heads up. This leads to the following form,

P(S = k) =
(

n
k

)
pk(1− p)n−k

The pk comes from the k coins having to end up heads, and the (1− p)n−k

comes from the remaining n− k coins having to end up tails. Here it is clear
that k ranges from 0 to n, since the smallest value is achieved when no coins
land heads up, and the largest number is achieved when all coins land heads
up. Any value between 0 and n can be achieved by picking a subset of the n
coins to be heads up.

Selecting the “Binomial” distribution on the website will allow you to
visualize the probability mass function of S. Play around with n and p to see
how this affects the probability distribution.

Continuous Distributions

Definition 0.0.14. We say that X is a continuous random variable if X
can take on uncountably many values.

If X is a continuous random variable, then the probability that X
takes on any particular value is 0.
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Example 0.0.7. An example of a continuous random variable is a Uni-
form[0,1] random variable. If X ∼ Uniform[0,1], then X can take on any
value in the interval [0,1], where each value is equally likely. The probabil-
ity that X takes on any particular value in [0, 1], say 1

2 for example, is 0.
However, we can still take probabilities of subsets in a way that is intuitive.
The probability that x falls in some interval (a, b) where 0 ≤ a < b ≤ 1 is
written

P(X ∈ (a, b)) = b− a

The probability of this event is simply the length of the interval (a, b).

A continuous random variable is distributed according to a proba-
bility density function, usually denoted f , defined on the domain of X.
The probability that X lies in some set A is defined as

P(X ∈ A) =
∫

A
f

This is informal notation but the right hand side of the above just
means to integrate the density function f over the region A.

Definition 0.0.15. A probability density function f (abbreviated pdf) is
valid if it satisfies the following two properties.

1. f (x) ≥ 0 for all x ∈

2.
∫ ∞
−∞ f (x)dx = 1

Example 0.0.8 (Exponential Distribution). Let λ > 0 be a positive real
number. Suppose X is a continuous random variable distributed according
to the density

f (x) =

λe−λx x > 0

0 x ≤ 0

Let’s check that f defines a valid probability density function. Since λ > 0
and ey is positive for any y ∈, we have f (x) ≥ 0 for all x ∈. Additionally,
we have ∫ ∞

0
f (x)dx =

∫ ∞

0
λe−λx

=
[
λ
−1
λ

e−λx
]∞

0

= 0− (−1)

= 1

Since f is nonnegative and integrates to 1, it is a valid pdf.
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Example 0.0.9 (Normal Distribution). We arrive at perhaps the most
known and used continuous distributions in all of statistics. The Normal
distribution is specified by two parameters, the mean µ and variance σ2.
To say X is a random variable distributed according to a Normal distribu-
tion with mean µ and variance σ2, we would write X ∼ N(µ, σ2). The
corresponding pdf is

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Some useful properties of normally distributed random variables are given
below.

Proposition 0.0.2. If X ∼ N(µx, σ2
x) and Y ∼ N(µy, σ2

y ) are independent
random variables, then

(a) The sum is normally distributed, i.e.

X + Y ∼ N(µx + µy, σ2
x + σ2

y )

(b) Scaling by a factor a ∈ results in another normal distribution, i.e. we
have

aX ∼ N(aµx, a2σ2
x)

(c) Adding a constant a ∈ results in another normal distribution, i.e.

X + a ∼ N(µx + a, σ2
x)

Heuristic. In order to rigorously prove this proposition, we need
to use moment generating functions, which aren’t covered in these
notes.

However, if we believe that X + Y, aX, and X + a are all still nor-
mally distributed, it follows that the specifying parameters (µ and σ2)
for the random variables in (a), (b), and (c) respectively are

E(X + Y) = EX + EY = µx + µy

Var(X + Y) = Var(X) + Var(Y) = σ2
x + σ2

y

and

E(aX) = aEX = aµx

Var(aX) = a2Var(X) = a2σ2
x

and

E(X + a) = EX + a = µx + a

Var(X + a) = Var(X) + Var(a) = Var(X) = σ2
x
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The Central Limit Theorem

We return to dice rolling for the moment to motivate the next result.
Suppose you rolled a die 50 times and recorded the average roll as
X̄1 = 1

50 ∑50
k=1 Xk. Now you repeat this experiment and record the

average roll as X̄2. You continue doing this and obtain a sequence of
sample means {X̄1, X̄2, X̄3, . . . }. If you plotted a histogram of the re-
sults, you would begin to notice that the X̄i’s begin to look normally
distributed. What are the mean and variance of this approximate
normal distribution? They should agree with the mean and variance
of X̄i, which we compute below. Note that these calculations don’t
depend on the index i, since each X̄i is a sample mean computed
from 50 independent fair die rolls. Hence we omit the index i and
just denote the sample mean as X̄ = 1

50 ∑50
k=1 Xk.

E(X̄) = E
( 1

50

50

∑
k=1

Xk

)
=

1
50

50

∑
k=1

E(Xk)

=
1
50

50

∑
k=1

3.5

=
1
50
· 50 · 3.5

= 3.5

where the second equality follows from linearity of expectations, and
the third equality follows from the fact that the expected value of a
die roll is 3.5 (See Section 2.2). The variance of X̄i is

Var(X̄) = Var
( 1

50

50

∑
k=1

Xk

)
(Definition of X̄i)

=
1

502 Var
( 50

∑
k=1

Xk

)
(Var(cY) = c2Var(Y))

=
1

502

50

∑
k=1

Var(Xk) (Xk’s are independent.)

=
1

502 · 50 ·Var(Xk) (Xk’s are identically distributed.)

≈ 1
50
· 2.92

≈ 0.0583

where we computed Var(Xk) ≈ 2.92 in Exercise 2.12. So we would
begin to observe that the sequence of sample means begins to re-
semble a normal distribution with mean µ = 3.5 and variance
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σ2 = 0.0582. This amazing result follows from the Central Limit
Theorem, which is stated below.

Theorem 0.0.4 (Central Limit Theorem). Let X1, X2, X3, . . . be iid
(independent and identically distributed) with mean µ and variance σ2.
Then

X̄ → N
(

µ,
σ2

n

)
in distribution as n→ ∞.

All this theorem is saying is that as the number of samples n
grows large, independent observations of the sample mean X̄ look
as though they were drawn from a normal distribution with mean µ

and variance σ2

n . The beauty of this result is that this type of conver-
gence to the normal distribution holds for any underlying distribu-
tion of the Xi’s. In the previous discussion, we assumed that each Xi

was a die roll, so that the underlying distribution was discrete uni-
form over the set Ω = {1, 2, 3, 4, 5, 6}. However, this result is true for
any underlying distribution of the Xi’s.

A continuous distribution we have not yet discussed is the Beta
distribution. It is characterized by two parameters α and β (much like
the normal distribution is characterized by the parameters µ and σ2.)
On the Central Limit Theorem page of the website, choose values for
α and β and observe that the sample means look as though they are
normally distributed. This may take a while but continue pressing
the “Submit” button until the histogram begins to fit the normal
curve (click the check box next to “Theoretical” to show the plot of
the normal curve).

Corollary 0.0.2. Another way to write the convergence result of the Central
Limit Theorem is

X̄− µ

σ/
√

n
→ N(0, 1)

Proof. By the CLT, X̄ becomes distributed N(µ, σ2

n ). By Proposition
4.14 (c), X̄− µ is then distributed

X̄− µ ∼ N
(

µ− µ,
σ2

n

)
= N

(
0,

σ2

n

)
Combining the above with Proposition 4.14 (a), we have that X̄−µ

σ/
√

n is
distributed

X̄− µ

σ/
√

n
∼ N

(
0,

σ2

n
·
( 1

σ/
√

n

)2)
= N(0, 1)
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